Chapter 26: The Vertebrates

© 2006 Thomson Higher Education

Fig. 26-2, p.434

Chordate Features

- Deuterostomes
- All share four features:
 - Notochord supports body
 - Nervous system develops from dorsal nerve cord
 - Embryos have pharynx with slits
 - Embryos have tail that extends past anus

Tunicates (Urochordates)

- Larva is free-swimming
- Adult is sessile and baglike with no coelom
- Both stages are filter feeders
- Pharynx serves in both feeding and respiration

© 2006 Brooks/Cole - Thomson

Tunicate Life History

Larva undergoes metamorphosis to adult form

Lancelets (Cephalochordates)

- Fish-shaped filter feeders
- Simple brain
- Segmented muscles
- Chordate characteristics of adult:
 - Notochord lies under dorsal nerve cord
 - Pharynx has gill slits
 - Tail extends past anus

Lancelet Body Plan

© 2006 Brooks/Cole - Thomson

Fig. 26-5b, p.435

Early Craniates

- Brain inside chamber of cartilage or bone
- Arose before 530 million years ago
- Resemble lancelets, lamprey larva

Reconstruction of one of the earliest known craniates

© 2006 Brooks/Cole - Thomson

Fig. 26-5c, p.435

Fig. 26-6c, p.436

© 2006 Brooks/Cole - Thomson

Trends in the Evolution of Vertebrates

- Shift from notochord to vertebral column
- Nerve cord expanded into brain
- Evolution of jaws
- Paired fins evolved, gave rise to limbs
- Gills evolved, gave rise to lungs

Evolution of Jaws

- First fishes lacked jaws
- Jaws are modifications of anterior gill supports

Early jawless fish (agnathan)

Early jawed fish (placoderm)

Modern jawed fish (shark)

Jawed Fishes

- Most diverse and numerous group of vertebrates
- Two classes:
 - Chondrichthyes (cartilaginous fishes)
 - Osteichthyes (bony fishes)

Cartilaginous Fishes: Class Chondrichthyes

- Most are marine predators
- Cartilaginous skeleton
- Main groups:
 - Skates and rays
 - Sharks
 - Chimaeras (ratfishes)

© 2006 Thomson Higher Education

Fig. 26-9c, p.438

Bony Fishes: Class Osteichthyes

- Includes 96 percent of living fish species
- Three subclasses:
 - Ray-finned fishes
 - Lobe-finned fishes
 - Lung fishes

© 2006 Brooks/Cole - Thomson

Body Plan of a Bony Fish

Lungfishes

- Have gills and one lung or a pair
- Must surface to gulp air

Fig. 26-10b, p.439

© 2006 Brooks/Cole - Thomson

Fig. 26-10b, p.439

@ 2006 Brooks/Cole - Thomson

Early Amphibians

- Fishlike skull and tail
- Four limbs with digits
- Short neck

Modern Amphibians

- All require water at some stage in the life cycle; most lay eggs in water
- Lungs are less efficient than those of other vertebrates
- Skin serves as respiratory organ

From Fins to Limbs

 Genetic enhancer controls genes involved in formation of digits on limb bones

 Change in a single master gene can drastically alter morphology

Living Amphibian Groups

Frogs and toads

Salamanders

Caecilians

Fig. 26-11a2, p.440

Fig. 26-11b, p.440

Fig. 26-11c, p.440

Rise of Amniotes

- Adaptations to life on land
 - Tough, scaly skin
 - Internal fertilization
 - Amniote eggs
 - Water-conserving kidneys

© 2006 Brooks/Cole - Thomson

Living Reptiles

Crocodilians
Turtles
Tuataras
Snakes and lizards

Evolutionary History of Amniotes

Fig. 26-14 p.442

So Long, Dinosaurs

- Mass extinction between the Cretaceous-Tertiary boundary
- K-T asteroid impact theory
- Global broiling hypothesis

© 2006 Brooks/Cole - Thomson

Crocodile Body Plan

© 2006 Brooks/Cole - Thomson

Lizards and Snakes

- Largest order (95 percent of living reptiles)
- Most lizards are insectivores with small peglike teeth
- All snakes are carnivores with highly movable jaws

Lizards

Fig. 26-17c, p.445

Lizards

Fig. 26-17d, p.445

Snakes

© 2006 Brooks/Cole - Thomson

Fig. 26-17e, p.445

Amniote Egg

Fig. 26-20, p.446

Birds

- Diverged from small theropod dinosaurs during the Mesozoic
- Feathers are a unique trait
 - Derived from reptilian scales
 - Serve in insulation and flight

Confuciusornis sanctus

© 2006 Thomson Higher Education

Fig. 26-19a, p.446

© 2006 Brooks/Cole - Thomson

Fig. 26-19b, p.446

Bird Flight

© 2006 Brooks/Cole - Thomson

Adapted for Flight

- Four-chambered heart
- Highly efficient respiratory system
- Lightweight bones with air spaces
- Powerful muscles attach to the keel

Mammals: Phylum Mammalia

- Hair
- Mammary glands
- Distinctive teeth
- Highly developed brain
- Extended care for the young

Mammal Origins & Radiation

- During Triassic, synapsids gave rise to therapsids (ancestors of mammals)
- By Jurassic, mouselike therians had evolved
- Therians coexisted with dinosaurs through Cretaceous
- Radiated after dinosaur extinction

Fig. 26-24, p.448

© 2006 Thomson Higher Education

Fig. 26-25a, p.448

© 2006 Thomson Higher Education

Fig. 26-25b, p.448

Three Mammalian Lineages

- Monotremes
 - Egg-laying mammals
- Marsupials
 - Pouched mammals
- Eutherians
 - Placental mammals

a About 150 million years ago, during the Jurassic, the first monotremes and marsupials evolved and migrated throughout the supercontinent Pangea.

© 2006 Thomson Higher Education

- **b** Between 130 and 85 million years ago, in the Cretaceous, placental mammals emerged and started to spread. Monotremes and marsupials of the southern supercontinent evolved in isolation from placental mammals.
- c About 20 million years ago, in the Miocene, placental mammals expanded in range and diversity. On Antarctica, mammals vanished. Marsupials and early placental mammals displaced monotremes in South America.
- d About 5 million years ago, in the Pliocene, advanced placental mammals invaded South America. They drove most marsupials and the early placental species to extinction.

Living Monotremes

- Three species
 - Duck-billed platypus
 - Two kinds of spiny anteater
- All lay eggs

© 2006 Thomson Higher Education Fig. 26-26e, p.449

© 2006 Thomson Higher Education

Living Marsupials

- Most of the 260 species are native to Australia and nearby islands
- Only the opossums are found in North America
- Young are born in an undeveloped state and complete development in a permanent pouch on mother

Living Placental Mammals

- Most diverse mammalian group
- Young develop in mother's uterus
- Placenta composed of maternal and fetal tissues; nourishes fetus, delivers oxygen, and removes wastes
- Placental mammals develop more quickly than marsupials

Table 26.1 Convergences Among Groups of Mammals

Life-Style	Home	Mammalian Family
Aquatic invertebrate eater	North America Central America Australia	Water shrew (Soricidae) Water mouse (Cricetidae) Platypus (Ornithorhynchidae)
Carnivore on land	North America Australia	Wolf (Canidae) Tasmanian wolf (Thylacinidae)
Anteater on land	South America Africa Australia	Giant anteater (Myrmecophagidae) Aardvark (Orycteropodidae) Spiny anteater (Tachyglossidae)
Ground- dwelling leaf, tuber eater	North America South America Eurasia	Pocket gopher (Geomyidae) Tuco-tuco (Ctenomyidae) Mole rat (Spalacidae)
Tree-dwelling leaf eater	South America Africa Madagascar Australia	Howler monkey (Cebidae) Colobus monkey (Cercopithecidae) Woolly lemur (Indriidae) Koala (Phascolarctidae)
Tree-dwelling nut, seed eater	Southeast Asia Africa Australia	Flying squirrel (Sciuridae) Flying squirrel (Anomaluridae) Flying squirrel (Phalangeridae)

Fig. 26-28a, p.451

Fig. 26-28b,c, p.451

© 2006 Thomson Higher Education

Fig. 26-28d, p.451

Fig. 26-28e, p.451

© 2006 Thomson Higher Education

Fig. 26-28f, p.451

© 2006 Thomson Higher Education

Fig. 26-28g, p.451

Fig. 26-28h, p.451

© 2006 Thomson Higher Education

© 2006 Thomson Higher Education Fig. 26-28i, p.451

Earliest Primates

- Primates evolved more than 60 million years ago during the Paleocene
- First primates resembled tree shrews
 - Long snouts
 - Poor daytime vision

Hominoids

- Apes, humans, and extinct species of their lineages
- In biochemistry and body form, humans are closer to apes than to monkeys
- Hominids
 - Subgroup that includes humans and extinct humanlike species

Trends in Lineage Leading to Humans

- Less reliance on smell, more on vision
- Skeletal changes to allow bipedalism
- Modifications of hand allow fine movements
- Bow-shaped jaw and smaller teeth
- Longer lifespan and period of dependency

Adaptations to an Arboreal Lifestyle

- Better daytime vision
- Shorter snout
- Larger brain
- Forward-directed eyes
- Capacity for grasping motions

Fig. 26-29, p.452

© 2006 Brooks/Cole - Thomson

Fig. 26-30a, p.453

Fig. 26-30b, p.453

© 2006 Brooks/Cole - Thomson

© 2006 Brooks/Cole - Thomson Fig. 26-30c, p.453

@ 2006 Brooks/Cole - Thomson

Fig. 26-30d, p.453

Fig. 26-30e, p.453

Fig. 26-30f, p.453

The First Hominoids

- Appeared during Miocene
- Arose in Central Africa
- Spread through Africa, Asia, Europe
- Climate was changing, becoming cooler and drier

© 2006 Thomson Higher Education

Fig. 26-31b-d, p.454

The First Hominids

- Sahelanthropus tchadensis arose 6-7 million years ago
- Bipedal australopiths evolved during Miocene into Pliocene

A. anamensis

A. afarensis

A. africanus

A. garhi

A. boisei

A. robustus

Exact relationships are not known

Fig. 26-33a, p.455

© 2006 Thomson Higher Education Fig. 26-33b, p.455

A. africanus3.2–2.3 million years

Fig. 26-33e, p.455

Fig. 26-33f, p.455

© 2006 Brooks/Cole - Thomson

© 2006 Brooks/Cole - Thomson

@ 2006 Brooks/Cole - Thomson

Fig. 26-34a-c, p.455

Homo Habilis 1.9-1.6 million years ago

- May have been the first member of genus
- Lived in woodlands of eastern and southern
 Africa

H. habilis

© 2006 Brooks/Cole - Thomson Fig. 26-36a, p.456

Homo rudolfensis 2.4-1.8 million years

H. habilis 1.9-1.6 million years

© 2006 Brooks/Cole - Thomson Fig. 26-37a, p.457

Fig. 26-37b, p.457

Fig. 26-37e, p.457

© 2006 Thomson Higher Education

homson Higher Education

Fig. 26-38, p.457

Homo erectus 2 million-53,000? years ago

- Evolved in Africa
- Migrated into Europe and Asia
- Larger brain than *H. habilis*
- Creative toolmaker
- Built fires and used furs for clothing

Homo sapiens

- Modern man evolved by 100,000 years ago
- Compared to Homo erectus:
 - Smaller teeth and jaws
 - Chin
 - Smaller facial bones
 - Larger-volume brain case

Neanderthals

- Early humans that lived in Europe and Near East
- Massively built, with large brains
- Disappeared when H. sapiens appeared
- DNA evidence suggests that they did not contribute to modern European populations

@ 2006 Thomson Higher Education

H. erectus2 million-53,000? years

© 2006 Thomson Higher Education

H. neanderthalensis 200,000-30,0000 years

© 2006 Thomson Higher Education

Earliest Fossils Are African

- Africa appears to be the cradle of human evolution
- No human fossils older than 2 million years exist anywhere but Africa
- Homo erectus left Africa in waves from 2 million to 500,000 years ago

*H. sapiens*Fossil from Ethiopia,
160,000 years old

Fig. 26-41b, p.459

Genetic Distance Data

© 2006 Thomson Higher Education

Fig. 26-43a, p.459

Fig. 26-43b, p.459